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IV. CONCLUSIONS

Data on a generalized structure of elliptical (oval) conductors
have been presented from the available analysis of some of the
basic transmission structures. With a single set of equations,
different shapes of the center conductors of the coupling struc-
tures can be analyzed by choosing the parameter a. Close agree-
ment of the results of the present formulation with some special
cases available in the literature confirms the validity of the
- analysis. This formulation can also be used to find the impedance
of a transmission structure having a center conductor of finite
thickness with rounded corners by choosing a low value of the
compression ratio. Such structures are useful for high-power
applications.
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TABLE 11
COMPARISON BETWEEN THE EVEN- AND ODD-MODE IMPEDANCES
OBTAINED FROM LEVY’S METHOD AND THE PRESENT WORK
FOR THE CASE OF CoUPLED CIRCULAR BARS

Zop{ohm }
pfesent
work

Zge{ohm)
present
work

"
r/b S/b | Levy %error Levy Yegtiror

.176 |96.2867| 95.6461 ‘0.6653 49.9141/48.2222 {3.3896
.200 |84.8239|84.1968( 0.7393]47.9315/46.4332 ({3.1259
.226 |83.6271/82.9573( 0.7985/49.9962] 48.6779 [2.6368
.4361.280 |74.9187{74.2094} 0.9468/49.9320{48.9281 [2.0105
.462(.338 (68.8971/68.2559!0.9307{50.0181{49.2143 {1.6070
.4821.398 (64.5025/63.8566( 1.0014}50.0393{49.3000{1.4774
.400 |[78.1118|77.5973 | 0.6587|58.9841{58.4546 |0.8892
.462 161.0799|60.2663(1.3320]/49.9750{49.1582}1.6344
.528 {58.5572|57.7676 [ 1.3484]149.9233|49.1648 {1.5193

.600 (74.1831]73.7622|0.5674|64.0618{63.6594 {0.6281
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Numerical Conformal Transformation of
Three-Magnetic-Wall Structures
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Abstract —The traditional conformal transformation approach for capac-
itance and impedance evaluation in TEM transmission lines leads to the
mapping of the line structure into a rectangular geometry.

Manuscript received October 5, 1988; revised March 16, 1989 This work
was supported in part by Marconi Itahana.

The author is with the Istituto di Elettroiecnica, University of Cagliari.
Piazza d’Armu. 09123 Caghar, Italy.

IEEE Log Number 8928331

0018-9480,/89 /0800-1263$01.00 ©1989 TEEE



1264

This approach is not suitable to cope with general two-conductor,
three-magnetic-wall line structures, and this paper describes how confor-
mal transformations may transform these structures into less complicated
geometries, which either can be solved or have been solved previously by
numerical techniques.

I. INTRODUCTION

Notable interest has recently been devoted, in TEM and quasi-
TEM transmission line analysis and design, to relatively nontra-
ditional conformal mapping approaches, ie., to combine the
advantages of both analytical conformal transformations and
numerical or variational methods [1], [2], to enhance the capabili-
ties of purely numerical procedures for the inversion of the
Schwarz—Christoffel (SC) formula [3], and to apply these proce-
dures to various structures [4].

In a similar vein, the analysis of general two-conductor, three-
magnetic-wall structures by inversion of the SC formula is con-
sidered in this paper. It can be noted that a particular case, with
two magnetic walls placed at infinity, has been analyzed in [5].

In the traditional approach to the capacitance calculation,
conformal transformations are applied aiming at a rectangular
configuration, with two parallel electrode sides and two parallel
magnetic wall sides, in which the capacitance can be immediately
evaluated. This approach cannot be applied to the case of three-
magnetic-wall geometries, and two solutions are proposed for the
problem in an attempt to preserve similar simplicity in the
capacitance evaluation of the transformed geometry.

The first solution is the conformal transformation of the origi-
nal structure to a new, three-magnetic-wall geometry, for which
accurate variational solutions have already been provided, 1.e,
the even-mode strip geometry as considered in [6] (with an
electric instead of magnetic top wall) and [7]. The second is the
conformal transformation of the original structure to a suitable
four-magnetic-wall structure, the shape of which will allow an
immediate parallel-plate capacitance calculation, as soon as two
of the magnetic walls have been led to coincide.

Both procedures can be divided into three steps. First, the
polygonal boundary of the original structure in the complex w
plane is mapped into the real axis of an intermediate z plane by
means of inversion of the SC formula. Second, a direct SC
transformation into a new w’ plane is performed, taking care of
suitable constraints imposed on the final w’-plane geometry by
assuming suitable vertices and by performing a suitable side
length optimization in the z plane. Third, the capacitance evalua-
tion for this geometry is carried out.

II. CONFORMAL TRANSFORMATION TO EVEN-MODE
STRIPLINE STRUCTURES

Starting from a general three-magnetic-wall structure in the w
plane, as in Fig. 1(a), a closed geometry as shown in Fig. 1(¢) can
be obtained in the final w’ plane by means of a suitable choice of
the vertex exponents g, in the SC formula [8] during the direct
mapping from the intermediate z plane. In the figures, continu-
ous lines denote electric walls, dashed lines magnetic walls.

It is evident that a particular case of this geometry can be
selected by imposing equal lengths for the w’ plane sides CD and
DE, thereby obtaining the even-mode strip geometry in Fig. 1(d).
For this purpose, in place of the old point D (if any), a new point
D’ between C and E has to be assumed as a p=—1 vertex
during the conformal transformation from the z plane to the w’
plane, and its z plane position has to be determined merely by
imposing equal lengths on the CD’ and D’E w’ plane sides. This
can easily be obtained by means of a suitable optimization
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Fig. 1. Conformal transformation of a general three-magnetic-wall structure
to an even-mode strip structure (a) General structure n the original w
plane (b) Intermediate = plane. (¢) Transformed geometry dertved from the
z plane positions of the w plane vertices. (d) Stripline structure obtained by
optimization of the z plane position of the point D’.

procedure applied to the w’ plane side lengths, as computed by
the SC formula from the actual D’ position in the z plane. It can
be noted that an analytical solution to the problem of imposing
equal lengths on the CD and DE w’ plane sides has been given
in [9] in a different application for a geometry similar to that of
Fig. 1(c), in which the position of the point D in the z plane is
optimized, provided that certain constraints on the positions of
the C and E points are satisfied.

As a first example of the capabilities of the method, the
even-mode angular offset stripline geometry of Fig. 2 is consid-
ered: a is the offset or twist angle of the strip with respect to the
customary “parallel” geometry.

The corresponding odd-mode structure (electric sidewalls) has
been studied in [4] by mapping into a rectangle a geometry
derived from it, in which two polygonal magnetic walls have been
imposed along the flux lines leaving the top and bottom strip
centers. The shape of the flux lines has been determined by
analyzing simpler structures, and the sensitivity of the capaci-
tance to their geometry has been found to be very low [4].

Similar techniques have been applied to the BC and EF
magnetic walls in Fig. 2, and the whole even-mode three-mag-
netic-wall geometry has been mapped to the stripline geometry in
Fig. 1(d) by optimizing the position of the z plane p = —1 vertex
by means of standard Newton—Raphson or bisection techniques.

Both Gish and Graham’s [6] and Smith’s [7] procedures have
been utilized for the impedance evaluation on the stripline geom-
etry of Fig. 1(d), and the agreement between the results has
proved to be very good, normally of the order of some 0.1-0.2
percent. The impedance results are shown in Fig. 2, with dots
representing computed values.

Of course, variational calculations can immediately be carried
out in the a=0° cases, and no optimization of the D’ point
position is necessary in the a = 90° cases. In some large « cases,
reference has been made to simplified geometries, due to difficul-
ties in the numerical inversion of the SC formula for geometries



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 37, NO. &, AUGUST 1989

160 + t + t + + + +

150 ;M 1

140 { 1
130 ._.__‘_\\**
1204 0.375 nd
1104 +

100,

w
(-]
I

80

704

IMPEDANCE [n.]

60+

501

404

304

201

10

u t

O 10 20 30 40 50 60 70 80 90
OFFSET ANGLE «¢ (DEGREES)

Fig. 2. Characteristic impedance curves for an even-mode angular offset
stripline (¢, =1).

showing very short gaps between the strip edge and the outer
conductor, or due to uncertainties in assuming correct geometries
for the BC and EF flux lines.

The inversion of the SC formula has been performed by the
procedures described in [3]. Partition techniques for the integra-
tion intervals have been necessary in many cases, and the com-
puting (CPU) times for the overall impedance calculation on a
Digital VAX 8600 computer ranged from some tens of seconds
for the simplest cases to several minutes for difficult cases.

As a second example of the capabilities of the method, calcula-
tions performed on the slot-coupled trough lines discussed in [2]
can be presented. The structure is shown in Fig 3(a) and the
geometry utilized for the present calculations is shown in Fig,
3(b). The aim was to make a comparison between the design
curves derived by the present techniques, which are shown in Fig.
4 with thick lines, and the curves already obtained in [2] (thin
lines). The abscissa is the even-mode impedance Z,, of the
structure in Fig. 3(a); Z,, and the odd-mode impedance Z;,
have to be matched according to the equation /Z;,-Z,, = 50 ©
[2] (a permittivity €, = 2.17 has been assumed, as in [2]).

Values for the W and h parameters in Fig. 3(a) have been
derived in the following way. For any width W, first the odd-mode
impedance Z,, has been calculated on the geometry of Fig. 3(b)
by assuming an electric wall on the IL side and by mapping the
structure into a rectangle, following the customary procedure for
two-magnetic-wall structures. Magnetic walls have been assumed
on the BC and GH sides, and the sensitivity of the impedance
values to their position has proved to be very small.
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From the obtained Z;, and the matching equation, the re-
quired Z,, value has been computed, and then the required
height 4 has been derived by means of tentative calculations
from assumed trial values and linear interpolation.

For any /4 value, a numerical inversion of the SC formula has
been performed for the polygon ABCDEFGHIL, having as-
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sumed a magnetic wall on the /L side, and the polygon has been
mapped from the intermediate z plane to the even-mode stripline
geometry in Fig. 3(c) by means of Newton—Raphson optimiza-
tion of the z plane position of the point £, mapped into the strip
edge point. Finally, impedance calculations have been performed
following [6] and [7] with near coincident results (except for a
very few points, in which differences of the order of 1 percent
have been observed).

The computed W and h pairs are marked by dots in Fig. 4.
As shown, the curves obtained following the present three-mag-
netic-wall approach are very similar to those derived by the
discrete variational conformal (DVC) approach in [2]. Moreover,
reading W and h pairs on the curves of [2] and computing even-
and odd-mode impedances following the present approach, the
matching equation is satisfied to a very good approximation, with
errors of the order of 1 percent or of some 0.1 percent. This
confirms the interest for design purposes of both techniques, and
of similar mixed technique approaches.

JII. CONFORMAL TRANSFORMATION TO A
FoUR-MAGNETIC-WALL STRUCTURE

A second way to analyze three-magnetic-wall structures is the
conformal transformation from the w plane of Fig. 5(a) to the w’
plane geometry of Fig. 5(c). This 1s an improvement of a proce-
dure introduced by Maltese [10] to perform approximate
impedance calculations of even-mode impedances for stripline
structures, which were transformed in “quasi-parallel-plate” ge-
ometries, similar to Fig. 5(c) but with EF and GH side lengths
respectively different from CB and AH.

The same parallel-plate geometry of Fig. 5(c) can be obtained
by numerical optimization of the z axis position of the point H
in Fig. 5(a). The capabilities of the method can be illustrated by
considering the same structures analyzed in the previous para-
graph. In any case, the impedance values computed in this way
have been found to be almost exactly equal to those computed by
transforming the structure in a stripline geometry.

Compared to the mapping to an even-mode stripline geometry,
the mapping to a parallel-plate geometry exhibits the merit of
being mathematically exact. However, it often leads to w plane
geometries which are more complex or more critical with respect
to the ratios between the lengths of contiguous sides in the =z
plane. at least when utilizing the simple optimization algorithm
described in [3], which can be heavily affected by the choice of
the w plane side mapped at infinity in the z plane.

In fact, calculation of the impedance for some points in Fig. 2
has been made possible only by introducing some improvements
in the procedure, ie., by performing first the inversion of a
structure like the polygon ABCDEFG in Fig. 5(a), and by
introducing at a later time the sides PA and GQ in the intermedi-
ate z plane of Fig. 5(b) before the final mapping to the w’ plane.
Care has been taken to select z plane lengths sufficient to give a
negligible PQ length in the original w plane, but not so large as
to give rise to length ratio problems in the z plane. Then, the =z
plane length ratio between the PA and GQ sides has been
optimized to obtain equal lengths for the GQ and PA sides in the
w’ plane geometry in Fig. 5(d), in which the PQ side is parallel to
EC, and finally the length of the PQ side is checked to have
really assumed a negligible value.

IV. CONCLUSIONS

Procedures for the analysis of three-magnetic-wall structures
by means of conformal mapping techniques have been intro-
duced. and some examples have been presented. The accuracy of
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Fig. 5 Conformal transformation from a general three-wall geometry to a

parallel-plate geometry. (a) Structure in the original w plane. (b) Intermedi-
ate - plane (c¢) Transformed geometry. (d) Geometry derived by an im-
proved procedure.

the results seems to be suitable to emphasize in general the
capabilities of mixed conformal mapping and variational tech-
niques, as well as the usefulness of optimization procedures
performed on specific parameters of the final geometry obtained
by the mapping procedure.
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